measurable$47423$ - definizione. Che cos'è measurable$47423$
DICLIB.COM
Strumenti linguistici IA
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole da parte dell'intelligenza artificiale

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è measurable$47423$ - definizione

Progressively measurable; Progressive measurability; Progressively measurable processes

Measurable cardinal         
LARGE CARDINAL NUMBER THAT IS THE CRITICAL POINT OF A NONTRIVIAL ELEMENTARY EMBEDDING OF THE UNIVERSE INTO A TRANSITIVE CLASS
Real-valued measurable cardinal; Real-valued measurable
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set.
Measurable function         
FUNCTION BETWEEN MEASURABLE SPACES
Lebesgue-measurable function; Lebesgue measurable function; Measureable function; Borel function; Measurable mapping; Borel section; Measurable map
In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open.
Progressively measurable process         
In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable.

Wikipedia

Progressively measurable process

In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable. Being progressively measurable is a strictly stronger property than the notion of being an adapted process. Progressively measurable processes are important in the theory of Itô integrals.